Posts

Showing posts from November, 2020

Emergency communication system

Image
An emergency communication system ( ECS ) is any system (typically computer-based) that is organized for the primary purpose of supporting one-way and two-way communication of emergency information between both individuals and groups of individuals. These systems are commonly designed to convey information over multiple types of devices, from signal lights to text messaging to live, streaming video, forming a unified communication system intended to optimize communications during emergencies. Contrary to emergency notification systems, which generally deliver emergency information in one direction, emergency communication systems are typically capable of both initiating and receiving information between multiple parties. These systems are often made up of both input devices, sensors, and output/communication devices. Therefore, the origination of information can occur from a variety of sources and locations, from which the system will disseminate that information to one or more target

Emergency communication vs. notification

Image
An emergency notification system refers to a collection of methods that facilitate the one-way dissemination or broadcast of messages to one or many groups of people with the details of an occurring or pending emergency situation. Mass automated dialing services such as Cell Broadcast, Reverse 911, as well as common siren systems that are used to alert for tornadoes, tsunamis, air-raid, and other such incidents, are examples of emergency notification systems. Emergency communication systems often provide or integrate those same notification services but will also include two-way communication—typically to facilitate communications between emergency communications staff, affected people, and first responders. Another distinguishing attribute of the term "communication" may be that it implies the ability to provide detailed and meaningful information about an evolving emergency and actions that might be taken; whereas "notification" denotes a relatively more simplisti

Need and limitations

Image
Emergencies place demands on communication processes that are often significantly different from the demands of non-emergency circumstances. Emergencies often involve escalating and evolving events that demand high performance and flexibility from the systems that provide emergency communication services. Message prioritization, automation of communication, fast message delivery, communication audit trails, and other capabilities are often required by each unique emergency situation. Inadequate emergency communications capabilities can have consequences that are inconvenient at best and disastrous at worst. Depending on the location, time, and nature of the emergency, a large variety of limitations could present themselves when it comes to communicating details of an emergency and any resultant actions that may need to be taken to protect life and property. For example, an audio public address system might be rendered ineffective if the emergency happens to be an explosive event which

Attributes

Image
Timeliness and speed of delivery edit Emergency systems require timely and quick dissemination in order to mitigate damage or loss of life. During the Virginia Tech massacre, about two hours had passed before the first communication (an email) was sent to staff and students. By that time, the gunman had already entered and secured a building in which he was shortly to begin his attack. It wasn't until about 20 minutes after the shootings began that a loudspeaker announcement was made for people to take cover. Ease of use edit During a crisis, the people who use an ECS need to quickly and easily launch their notifications and they need to be able to do so in a way that securely provides them with confidence and an intuitive, familiar and easy-to-use interface that can be accessed from any location. An emergency communication system that's designed for non-technical users will ensure successful administration and usage; and during some life-threatening emergency situations, campu

History

Image
The examples and perspective in this section deal primarily with the United States and do not represent a worldwide view of the subject . You may improve this section, discuss the issue on the talk page, or create a new section, as appropriate. ( June 2018 ) (Learn how and when to remove this template message) With the growth of populations and the evolution of technology, the methods for communicating emergency situations have also changed, as has the definition for what might constitute an “emergency.” These methods would also very likely depend on a particular region's culture and location, as well. Early systems edit In America's formative years, common means of emergency communications may have mostly consisted of church bells being rung or messengers on horseback. Later, as technology developed, the telegraph became a nearly instant method of communicating. From there, radio communications, telephones and sirens became commonplace. After the surprise attack on Pearl Ha

Broadcast technologies

Image
Perhaps the oldest or most basic forms of public communication are staples such as over-the-air television, sirens, and radio. More modern components (using the same concept) might include lights and Giant Voice systems. These all have one thing in common: they broadcast indiscriminately to anyone who has the means to receive the message; whether they are simply in the immediate area or require some sort of receiving device. Broadcast technologies use point-to-point communications methodology and may either require infrastructure or not. Examples of broadcast technologies requiring infrastructure might include such things as Reverse 911 and broadcast-affiliate networks. Infrastructure-independent edit Broadcast technologies that do not depend on man-made infrastructure to convey communication may be least susceptible to disruption during disasters and emergencies. Some examples of infrastructure-independent technologies are: Short-wave Radio Short-wave (or Amateur) radio is a relative

Communication devices

Image
There are primarily two major types of communication devices: those for individual people and those for groups of people. Public Communication Devices are the devices that are designed to deliver a communication to more than one person as a single process at the same time. Examples include a digital electronic sign, a loud speaker that is part of a PA system, or a large flat panel display on a wall. A private communication device is a device that is designed to deliver communication to one person at a time through a single process. Typically, a single person is in control of such a device which is usually not shared. Examples include a cell phone, a text message on the cell phone, an email, or a message over a 2 way radio. Public and shared devices edit Public communication refers to the conveyance of messages to people, in such a way that anyone may receive the communication at nearly the same time as anyone else, typically using a common device. The most common way of facilitating pu

Case studies, failures and successes

Image
New York City World Trade Center attack edit During the September 11 attack in 2001, traditional telecommunications were stretched and overloaded. Phone networks along the entire East Coast were congested into uselessness. 911 operators were overwhelmed with calls and could do little more than offer encouragement because of the confusing information they were receiving. Communications between emergency services personnel were limited by a lack of interoperability between departments. Many fire-fighters died when the towers collapsed because they couldn't receive the warning that the police officers received from the New York City Police Department (NYPD) helicopters. Amateur radio played a large role in facilitating communications between the various emergency departments, which operated on different frequencies and protocols. London Underground bombings edit On the day of the 7 July 2005 London bombings, mobile phone networks, including Vodafone, reached full capacity and were ove